

TESLA A6000

V-By-One & LVDS TV Panel 测试治具

Ver 1.01

目 录

-,	概述::::::::::::::::::::::::::::::	2
二、	产品描述	2
三、	产品特点及功能	4
四、	硬件操作说明	4
五、	软件使用说明	6
六、	技术参数	9
七、	输出接口及配件	9
八、	售后服务	12

一、概述

TESLA A6000 为一款便携型并具备支持高分辨率大尺寸液晶模块测试设备,可提供液晶 模块测试所需的 LVDS 信号、V-By-One 信号、VDD 电源及检测 PATTERN 图像;使用者 可透过应用软件于 PC 端自行编辑各式不同的时序参数、电源参数及图像,在机器上做自 动循环测试或手动控制单键操作,快速切 Timing/Pattern/Program 模式,其简易方便的 操作方式搭配复合式按键功能使用,可广泛应用于生产/研发/品保/质量验证/售服/业务等 液晶模块相关测试领域。

二、产品描述

2.1 产品外观

2.2 接口介绍

三、产品特点及功能

- ◆ 体积更小、功能更全、使用更方便
- ◆ 支持 1CH、2CH、4CH LVDS 信号输出,传输标准遵照 TIA/EIA-644 标准
- ◆ 支持 8LANE /16LANE V-BY-ONE 4K2K 信号输出
- ◆ 显示分辨率可高达 3840 (dot) *2160(line),点时钟频率高达 1188MHZ
- ◆ 支援色深 6/8/10 bits
- ◆ 仪器内建图库中有 600 幅画面, 几乎涵盖液晶模组测试领域全部测试画面
- ◆ 设备自带图形库管理器,可根据我司提供图像编码原则,自行添加扩展 Pattern
- ◆ 可编程的 VDD 电源,可满足不同尺寸规格模组的测试
- ◆ 支持 FLICKER 画面
- ◆ 支持实时侦测 VDD 电压/电流
- ◆ 支持 VDD 电源过保护功能
- ◆ 支持 ESD 保护功能,具备防电源冲击、浪涌、瞬时短路保护以及热插拔防护
- ◆ 支持 PATTERN 自动循环/手动测试,且循环时间间隔可调
- ◆ 支持通讯 (RS-485)外设控制
- ◆ 利用数据下载器,快速 Download TIMING 以及 Pattern 数据

四、硬件操作说明

1.启动界面:

将 TESLA A6000 接通电源启动后,键盘显示屏显示启动画面如下:

2.待机界面:

待仪器进入到待测状态时,画面显示如下:

显示屏共四行

第一行显示代表含义:当前测试 TIMING 时序机种名称

第二行显示代表含义: 18 为当前设置 PatternA 设置数量, 1 为当前第一幅

第三行显示代表含义:VDD 及对应电流.当设备输出时,显示当前设置电压及实测电流

第四行显示代表含义: VBL 及对应电流.当设备输出时,显示当前设置电压及实测电流

3.程序选择:

进入待机界面后,操作者需首先确认待测试的液晶模组对应的参数设置,是否已经 写入仪器;若已存放于仪器,再确认当前的配置程序名称是否与当前的待测物规格 一致;若确认一致,则可将仪器输出端同待测产品连线,确认正确连线 OK 后,方 可按键盘的 ON/OFF 键,将仪器输出启动。

若当前的配置程序名称同当前的待测产品不一致时,需按键盘的"MODE"键,此时键 盘会进入配置程序选择界面:

用户可按键盘的"+1""-1"或"+10""-10"来查看全部名称;当选择到要使用的配置程 序时,请按 "YES"键确认

4. 仪器输出:

在选择完毕对应的配置程序后,确保输出线材都有正确连接,方可按下 ON/OFF 键,此时 ON/OFF 键正上方绿色指示灯亮起,代表仪器已输出。

在连接输出线材时,需要注意的是

 1.确保 LVDS 线材和背光线材各 Pin 位,都按照待测产品规格书正确的制作;
2.若待测产品为双通道 LVDS 屏,仪器两个接口都可用;若待测产品为四通道 LVDS 屏, 仪器 LVDS OUT1 为主口,LVDS OUT2 为辅口。)仪器输出至屏幕正常显示,此时可通 过 "PREV" "NEXT"进行上下切换此程序中的画面;也可通过 "LOOP" 键进行自动切 换/手动切换的模式选择,AUTO/MANUAL 指示灯会随之变化显示当前模式。

在测试 8 lane 4K2K 模组时需要注意

设备有 2 个 51PIN 输出连接器,当测试 8LANE 屏时,VBO_OUT1 有效。VBO_OUT2 无输 出,当测试 16Iane 时,根据不同的屏型号搭配我司提供的不同类型转接板即可正常输出(不 同厂家玻璃 PIN 定义不一致,尤其是各种控制信号 PIN 不一样,故搭配转接板)

五、软件使用说明

LVDS 时序编辑器为一款高度整合系统,整合了 PC/LVDS 视讯信号/DC 电源,提供完整 且稳定的测试解决方案.系统基于内置 WEB 服务器内建 LCM 控制软件,控制软件实现 LCM 测试参数的编辑功能,整合了 TIMING/PATTERN/POWER/PROGRAM 编辑并且全部采用中 文图形化界面,提供直观的功能表达方式便于快速了解和使用。

5.1 软件界面主要介绍

1.打开软件

在软件文件夹中找到如下 — pg_timing_editor.exe 执行档文件,双击打开;

2.打开软件后显示主界面如下图:

青选择下载器使用的串口 ▼	📄 🔲 开机自启动 📄 自动循环	不播放 读取下载器	2番	更新下载器配置	PG16S0416
BLane-4Kx2K-LR Blane-4Kx2K-DOT	时序参数 循环列表	图形库管理			
L6lane-4K×2K-DOT	- 基本参数 行参数	17.	参数	属肉	参数
L440×900	115-82	~~	₽× 9×	200	LEP 8X
.920×1080-12-V	总宽度 4400	⇒ 总宽度	2250 🔷	编码方式: 🔘 VESA 💿	JEIDA 🔘 VIMM
920×1080-12-J	有效宽度 3840	有效宽度	2160 🔷		
920×1080-5-V 920×1080-5-1	同步宽度 160	同步宽度	30 🚔	位数选择: 🔘 6 位 🔘	8位 💿 10位
366×768-12-V	同步后肩 240	◆ 同步后肩	30		
366×768-12-J	同步极性 正	▼ 同步极性	Ē ▼	画道远挥: ● 以 ● 半	
366×768-5-V	占时钟频率 (mHz) 1188	00 🚔 场场刷新案 (47	120.00	分屏方式: 💿 逐点 🔘	左右 🔘 方式1 🔘 方式2
300×/08-5-J filane-4Kv2K-I R	AND 117X + 4-117				
	电源参数	> 00 🛋			
		Pmm 频率 (Hz)	50 🔄 上	电顺序 上电时间 (ms)	下电顺序 下电时间 (ms)
	VDD 保护电流 (A) 2.	10 🖨			
	_	P== 占空比	0 🗘 V.	DD 🔻 10 🜩	VDD 🔻 13 🜩
	VBL 电压 (V) 24	4.00 荣	S	IG 🔻 11 🚔	SIG 🔻 14 🚔
	VBL 保护电流(A) 2.	10 ♀ 背光亮度 DIM (V)	0.00 💽 V	BL 🔻 12 👘	VEL * 15
				西 à Cu-l 向	

3.TIMING 及 Pattern 编辑

Timing 及 Pattern 编辑时,需将数据下载器用数据线一端接 PC 一端接下载器 232 口(使 用下载器时,需提前在 PC 端安装 USB TO R\$232 驱动)

操作步骤如下:

3.1 将下载器与电脑通过数据线连接。(电脑需有 USB to RS232 驱动,下载器才能被识别到)

请选择下载器使用的串口 🔹

3.2 点击软件左上角

选择下载器对应的 COM 口,如无法识别

到 CMO 口,可能的原因为,未安装串口驱动程序 3.3 下载器 CMO 口识别到后,确认软件右上角当前设备型号

4.编辑主界面介绍:

3.1 时序&电源编辑:

10字参数 通环列表 否形/非常 基本参数 行参数	理 场参救		
基本参数 行参数	场影教		
行参数	场参数		
P1920-000 14400 100		属性影	教
P1000 000 4.4000			
10.70.6	息斑菌 2250	编码方式: ○ VESA @ JEI	DA 💮 VIDIM
有效宽度 3840 💠	有效宽度 2160		the second se
同步宽度 160 🔄	同步宽度 30		2 😻 10 112
同步后篇 240 🔄	阿步后 肩 30	通過法择: ○ 双 ○ 单 (○四 ◎ 八 ◎ 十六
同步极性 🖌 📼 💌	同步极性 正	•	
点时钟频章 (MDfz) 594.00 💿	场频刷新车 0fz) 60.00		5 💿 方式1 💿 方式2
电源参数			
3			
VDD 电压 (V) 12.00 ①	Pwn 频率(Hz) 50 💿	上电顺序 上电时间 (ms)	下电顺序 下电时间 (ms)
	Land Land		
初助 操作电流 0.0 2.10 💽	Page 法合计/ 0 画	V20 - 10	170 - 19
V8L B.F. (V) 24.00			710 · 13
	15-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	SIG ¥ 11	SI0 V 14
VBL 保护电流(A) 2.10 💿	₩元與度 118 (V) 0.00 💿	VHL - 12	VEL - 15
	周歩究療 周歩気療 周歩振費 200 200 200 200 200 200 200 20	周歩宽度 190 0 円歩克度 20 同歩后間 2 240 0 円歩后間 30 同歩低階 2 正 点団神頻章 (ME) 594.00 0 15.例刷紙車 0(z) 00.00 电源参数 3 V3D 电压 (V) 12.00 0 P48 频率 0(z) 50 0 V3D 供計电流 (A) 2.10 0 P48 频率 0(z) 50 0 V3L 供計电流 (A) 2.10 0 V3L 保計电流 (A) 2.10 0 V3L (C)	周歩党策 周歩党策 周歩低間 240 ○ 同歩気間 30 ○ 通過法律: ○ 6 位 ○ 6 位 周歩低性 240 ○ 同歩気間 30 ○ 通過法律: ○ 双 ○ 单 ④ 近封持頻草 (Miz) 594.00 ○ 法场税報節草 0fz) 00.00 ○ 分類方式: ○ 逐点 ● 左右 电源参数 3 VaD 电压 (V) 12.00 ○ PNN 疾業 0fz) 50 ○ 上电顺序 上电时间 (nz) VaD 模評电流 (A) 2.10 ○ PNN 疾業 0fz) 50 ○ 上电顺序 上电时间 (nz) VaL 电压 (V) 24.00 ○ PNN 疾業 0fz) 50 ○ Le电顺序 上电时间 (nz) VaL 电压 (V) 24.00 ○ PNN 疾業 0fz) 50 ○ Le电顺序 上电时间 (nz) VaL 电压 (V) 24.00 ○ PNN 疾業 0fz) 50 ○ VaL v 12 ○

- (1) 时序名称列表
- (2) 时序参数编辑栏位
- (3) 电源参数编辑栏位
- (4) 时序名称修改位

单色场	- 18	
255%I	5 🚽 255白	
255頃 255蔵	5 🗘 12752	
255白	5 🔆 蕭炳	
1272k	2 2 55%I 5	
	2 25588	
	2 🔅 255盘	
	1 🔅 自色橫向山-斜坡	
	1 🔶 白色竖向山斜坡	
	1 후 白色釉向HL斜坡	
	1 🔅 自色怒向HL斜被	
	1 🔶 1*1橋子	
	1 🗘 無白4*4棋盘格	前大预览
	1 255RGBW植物彩旗	

(5) 循环列表

设备图库列表,使用者从中选取双击,即可选定调取画面,选定画面名称后双击,即可删除

P色场	-		
255éT			
255線			
255堂			
55白			
飛 北病			
.27灰			
	-		
	0		
		图像管理	图像类别管理
		图象属性: 0x0100FF04	图像类别: 1 🔷
		(2)時かか。	+D(22).
		15 T02 - A- NIL 1	5a) 78-8580 ;

(6) 图形库管理(可根据我司提供的图像编码原则,自行新增测试 Pattern)

注: 以上时序参数、电源参数、画面等编辑完成后,请务必点击界面右下方的 "更新时序"按钮,方可在软件界面上保存当前设置。

参数编辑完毕且更新保存后,选择下载器对应的 COM 口,点击

更新下载器配置

将软件界面内的 TIMING 及 Pattern 数据更新到下载器。

5.将下载器数据写入到设备

将 6PIN 扁平数据线一端连接数据下载器,一端连接设备 Download,连接完毕后,打开设备 电源开关,此时可看到数据下载器绿色 LED 灯在不停闪烁,键盘显示屏提示数据下载成功后 即数据写入完成,拔掉数据线即可进入测试模式

六、技术参数

Output	LVDS&V-By-ONE				
connector	40PIN牛角X2(LVDS) 51PINX2(V-By-one)				
	1 Link up to 135MHz				
	2 Link up to 270MHz (135MHz x 2)				
Pixel Rate	4 Link up to 540MHz (135MHz x 4)				
	8LANE V-By-One 597M				
	16LANE V-By-One1184M				
Color Deep	R G B each channel 6/8/10 bits				
VDD Output	Adjuster 0-13V@4~5A Step0.01V (Over current protection)				
Test Pattern	Basic and custom-made pattern				
Software	Programmable timing and pattern by web server				
Control signal	DOT-CLK H sync V sync DE				
Download Interface	数据下载器				
Control Interface	RS485&RS232				
Llaar Operate	Display LCD				
User Operate	Operate Key-stoke				
Power Input	DC 24V				
Storage Temperature	-20~60°C				

七、端口输出定义

7.1 LVDS 端口定义:

40pin 输出端接口定义

NO	PIN Name	NO	PIN Name
1	GPIO0	21	TX1CLKOUT-
2	GPIO1	22	TX1CLKOUT+
3	TX0_OUT0-	23	TX1_OUT3-
4	TX0_OUT0+	24	TX1_OUT3+
5	TX0_OUT1-	25	TX1_OUT4-
6	TX0_OUT1+	26	TX1_OUT4+
7	TX0_OUT2-	27	DDCO_SCL
8	TX0_OUT2+	28	DDCO_SDA
9	TX0CLKOUT-	29	NC
10	TX0CLKOUT+	30	NC
11	TX0_OUT3-	31	GND
12	TX0_OUT3+	32	VDD
13	TX0_OUT4-	33	GND
14	TX0_OUT4+	34	VDD
15	TX1_OUT0-	35	GND
16	TX1_OUT0+	36	VDD
17	TX1_OUT1-	37	GND
18	TX1_OUT1+	38	VDD
19	TX1_OUT2-	39	GND
20	TX1_OUT2+	40	VDD

7.2 ESD 保护器

保护器 40PIN 输入端

NO	PIN Name	NO	PIN Name
1	GND	21	TX1_OUT2-
2	VDD	22	TX1_OUT2+
3	GND	23	TX1_OUT1-
4	VDD	24	TX1_OUT1+
5	GND	25	TX1_OUT0-
6	VDD	26	TX1_OUT0+
7	GND	27	TX0_OUT4-
8	VDD	28	TX0_OUT4+
9	GND	29	TX0_OUT3-
10	VDD	30	TX0_OUT3+
11	NC	31	TX0CLKOUT-
12	NC	32	TX0CLKOUT+
13	DDCO_SCL	33	TX0_OUT2-
14	DDCO_SDA	34	TX0_OUT2+
15	TX1_OUT4-	35	TX0_OUT1-
16	TX1_OUT4+	36	TX0_OUT1+
17	TX1_OUT3-	37	TX0_OUT0-
18	TX1_OUT3+	38	TX0_OUT0+
19	TX1CLKOUT-	39	GPI00
20	TX1CLKOUT+	40	GPI01

7.3 V-BY-ONE 输出端口定义 1

No	Symbol	Description	Π	No	Symbol	Description
1	VLCD	Power Supply +12.0V	Π	27	GND	Ground
2	VLCD	Power Supply +12.0V	Ħ	28	Rx0n	V-by-One HS Data Lane 0
3	VLCD	Power Supply +12.0V	Π	29	Rx0p	V-by-One HS Data Lane 0
4	VLCD	Power Supply +12.0V	Ħ	30	GND	Ground
5	VLCD	Power Supply +12.0V	Π	31	Rx1n	V-by-One HS Data Lane 1
6	VLCD	Power Supply +12.0V	Ħ	32	Rx1p	V-by-One HS Data Lane 1
7	VLCD	Power Supply +12.0V	Ħ	33	GND	Ground
8	VLCD	Power Supply +12.0V	Π	34	Rx2n	V-by-One HS Data Lane 2
9	NC	NO CONNECTION	Ħ	35	Rx2p	V-by-One HS Data Lane 2
10	GND	Ground	Π	36	GND	Ground
11	GND	Ground	Π	37	Rx3n	V-by-One HS Data Lane 3
12	GND	Ground	Π	38	Rx3p	V-by-One HS Data Lane 3
13	GND	Ground	Π	39	GND	Ground
14	PWM TIN	External VBR (From System)	Π	40	Rx4n	V-by-One HS Data Lane 4
15	PWM TOUT	External VBR (For System)	Π	41	Rx4p	V-by-One HS Data Lane 4
16	Gplus mode	'L' or 'NC' : Low Power 'H' : High Luminance		42	GND	Ground
17	Gplus EN	'H' or 'NC' : Gplus Enable 'L' : Gplus Disable(RGB mode)	1	43	Rx5n	V-by-One HS Data Lane 5
18	SDA	SDA (For I2C)	Π	44	Rx5p	V-by-One HS Data Lane 5
19	SCL	SCL (For I2C)	Π	45	GND	Ground
20	NC	NO CONNECTION	П	46	Rx6n	V-by-One HS Data Lane 6
21	Bit SEL	'H' or NC= 10bit(D) , 'L' = 8bit	Π	47	Rx6p	V-by-One HS Data Lane 6
22	Data Format	'L'=Mode1, 'H'=Mode2,		48	GND	Ground
23	AGP or NSB	'H' or NC : AGP 'L' : NSB (No signal Black)	$\left \right $	49	Rx7n	V-by-One HS Data Lane 7
24	NC	NO CONNECTION	Π	50	Rx7p	V-by-One HS Data Lane 7
25	HTPDN	Hot plug detect	П	51	GND	Ground
26	LOCKN	Lock detect		-	-	

V-BY-ONE 输出端口 2

No	Symbol	Description		No	Symbol	Description
1	VLCD	Power Supply +12.0V		27	GND	Ground
2	VLCD	Power Supply +12.0V	Ť	28	Rx0n	V-by-One HS Data Lane 0
3	VLCD	Power Supply +12.0V	T	29	Rx0p	V-by-One HS Data Lane 0
4	VLCD	Power Supply +12.0V	Ť	30	GND	Ground
5	VLCD	Power Supply +12.0V	T	31	Rx1n	V-by-One HS Data Lane 1
6	VLCD	Power Supply +12.0V	Ť	32	Rx1p	V-by-One HS Data Lane 1
7	VLCD	Power Supply +12.0V	Ť	33	GND	Ground
8	VLCD	Power Supply +12.0V	Ť	34	Rx2n	V-by-One HS Data Lane 2
9	NC	NO CONNECTION	T	35	Rx2p	V-by-One HS Data Lane 2
10	GND	Ground	Ť	36	GND	Ground
11	GND	Ground	T	37	Rx3n	V-by-One HS Data Lane 3
12	GND	Ground	T	38	Rx3p	V-by-One HS Data Lane 3
13	GND	Ground	Ť	39	GND	Ground
14	PWM TIN	External VBR (From System)	T	40	Rx4n	V-by-One HS Data Lane 4
15	PWM TOUT	External VBR (For System)	Т	41	Rx4p	V-by-One HS Data Lane 4
16	Gplus mode	'L' or 'NC' : Low Power 'H' : High Luminance		42	GND	Ground
17	Gplus EN	'H' or 'NC' : Gplus Enable 'L' : Gplus Disable(RGB mode)		43	Rx5n	V-by-One HS Data Lane 5
18	SDA	SDA (For I2C)		44	Rx5p	V-by-One HS Data Lane 5
19	SCL	SCL (For I2C)	Ť	45	GND	Ground
20	NC	NO CONNECTION		46	Rx6n	V-by-One HS Data Lane 6
21	Bit SEL	'H' or NC= 10bit(D) , 'L' = 8bit	Ì	47	Rx6p	V-by-One HS Data Lane 6
22	Data Format	'L'=Mode1, 'H'=Mode2,		48	GND	Ground
23	AGP or NSB	'H' or NC : AGP 'L' : NSB (No signal Black)		49	Rx7n	V-by-One HS Data Lane 7
24	NC	NO CONNECTION		50	Rx7p	V-by-One HS Data Lane 7
25	HTPDN	Hot plug detect		51	GND	Ground
26	LOCKN	Lock detect		-	-	-

注意;

V-BY-ONE 2 输出端口 PIN 定义完全一致, 在输出 8LANE 4K2K 信号时, 只有 OUT1 端口有 效, 输出端口 2 无输出。当输出 16LANE 4K2K 信号时。OUT1 OUT2 都有输出, 其中 OUT2 需搭配信号转接板

八、售后服务

非常感谢您使用我们的产品,在使用我们的产品时,你还将注意如下事项。 注意事项:

- (1)、 当需要将测试线材连接仪器时,请小心插拔,请勿用力过大,以免损坏;
- (2)、如果您将仪器及测试机台连接好时,请仔细检查你所测试的面板是否与仪器 VDD 电压一致,当仪器已经通电但 PANEL 未显示时,请立刻断电,检查线材连接是否 正确,确保连接无误后请再次启动。如还未正常显示,请联系我们;

质量保证:

本产品自购买之日起, 壹年保修。